秒懂多维数据库、数据库、数据仓库的关系

  • A+
所属分类:赛迪思

提到数据库,各位首先想到的应该是Oracle、DB2、MySQL、SQL Server这种关系型数据库(Relational Database),所以下文所称数据库如不加说明均指关系型数据库。

实际上,从数据库自身角度出发,它所提供的表、字段、数据行是为了实现外界访问而提供的逻辑模型,真正的数据物理模型是操作系统文件。

多维数据库产品数量不像关系数据库那么多,关系数据库主要应用于业务级别的增删改查操作,多维数据库主要用于数据分析。关系数据库使用SQL作为查询语言,多维数据库则利用MDX作为查询语言。

在讲数据仓库之前,先来说说仓库。

仓库是什么?这个问题估计任何人都可以回答,而且答案也很一致。无论是物流仓库、制造车间零部件仓库或是商场存货仓库,无论仓库是大是小,其最基本且最主要功能都是有序、妥善的保管仓库中的物品。

数据仓库是一个建设过程,而不是产品。数据仓库是通过对来自不同的数据源进行统一的处理及管理,通过灵活的展示方法构建面向分析的集成化数据环境,为企业提供决策支持(Decision Support)。数据仓库的基本架构主要包含的是数据流入流出的过程,基于关系数据库与多维数据库建立,对数据进行数据挖掘和分析。

数据仓库顾名思义,就是数据的仓库

下文以一个数据分析体系的演变过程说明这第三者之间的关系  :

第一阶段

企业信息化达到一定程度之后,一定会有报表的需求,此时直接从业务系统的数据库进行查询。

第二阶段

直接查询业务系统数据库,很容易对业务系统造成影响,这时可能会将数据抽取出来,放在一个镜像数据库里进行查询。

第三阶段

当数据规模越来越大,报表与数据分析的需求也随之增多。开始对数据进行系统化的规划与管理时,数据仓库的雏形也已建立起来。

关系型数据库的星形(或雪花型)结构是数据仓库的常见形式之一,但不是唯一的形式,只要能做到将数据有序管理,基本上就可以称之为数据仓库。

当建立起心形或雪花型的数据仓库的时候,已经可以做一些基本的数据分析了。但是会有一些弊端。星形或水上行结构虽然模拟了多维数据模型,但是其本质上还是关系型数据库的表字段以及数据行的模型。无法做到真正意义上的面对业务时的数据分析。而且这种直接建立在关系型数据库之上的模型,很难让业务人员自主进行数据分析。

第四阶段

基于关系数据库星型或雪花型结构所建立的数据仓库,虽然可以进行数据分析,但分析能力不强。

星型或雪花型结构虽然模拟了多维数据模型,但其本质上还是关系型数据库的表及字段模型,无法做到真正意义上面向业务的数据分析,而且这种直接建立在关系型数据库之上的模型,很难让业务人员独立进行数据分析。

第五阶段

由于多维数据库维度既业务的特性,所以基于多维数据库所建立的数据体系的分析能力要强很多,而且也能将让业务人员自主分析这一目标落地实现。

多维数据库向外提供维度与数据集市模型,数据的实际物理存储则对外屏蔽。关系型数据库可以作为多维数据库的一种底层实现,当然还有其他的方式,比如数据块文件、分布式存储等。

关于多维数据库,传统的划分方式有ROLAP、MOLAP、HOLAP,现在随着大数据概念的兴起,分布式数据存储与微服务架构已经成为了多维数据库的新的实现方式。

  • 我的微信
  • 这是我的微信扫一扫
  • weinxin
  • 我的QQ
  • 这是我的QQ扫一扫
  • weinxin

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: